Appraisal of Instantaneous Phase-Based Functions in Adjoint Waveform Inversion
نویسندگان
چکیده
منابع مشابه
Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کاملSecond-order adjoint state methods for Full Waveform Inversion
Full Waveform Inversion (FWI) applications classically rely on efficient first-order optimization schemes, as the steepest descent or the nonlinear conjugate gradient optimization. However, second-order information provided by the Hessian matrix is proven to give a useful help in the scaling of the FWI problem and in the speed-up of the optimization. In this study, we propose an efficient matri...
متن کاملImage-domain waveform inversion with the adjoint-state method
Waveform inversion is a velocity model building technique based on full seismograms as the input and seismic wavefields as the information carrier. Conventional waveform inversion is implemented in the data-domain. Similar techniques can be formulated in the image domain, with seismic image as the input and seismic wavefields as the information carrier. The objective function for image-domain w...
متن کاملFull waveform inversion with optimal basis functions.
Based on the approach suggested by Tarantola, and Gauthier et al., we show that the alternate use of the step (linear) function basis and the block function (quasi-delta function) basis can give accurate full waveform inversion results for the layered acoustic systems, starting from a uniform background. Our method is robust against additive white noise (up to 20% of the signal) and can resolve...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2018
ISSN: 0196-2892,1558-0644
DOI: 10.1109/tgrs.2018.2811245